Chapter 9 — Real Memory Organization and

Management
Outline
9.1 Introduction
9.2 Memory Organization
9.3 Memory Management
94 Memory Hierarchy
9.5 Memory Management Strategies
9.6 Contiguous vs. Noncontiguous Memory Allocation
9.7 Single-User Contiguous Memory Allocation

9.7.1 Overlays

9.7.2 Protection in a Single-User System

9.7.3 Single-Stream Batch Processing

9.8 Fixed-Partition Multiprogramming

9.9 Variable-Partition Multiprogramming

9.9.1 Variable-Partition Characteristics

9.9.2 Memory Placement Strategies

9.10 Multiprogramming with Memory Swapping

Objectives

« After reading this chapter, you should understand:
the need for real (also called physical) memory management.
the memory hierarchy.
contiguous and noncontiguous memory allocation.
fixed- and variable-partition multiprogramming.
memory swapping.
memory placement strategies.

9.1 Introduction

 Memory divided into tiers

— Main memory
 Relatively expensive
 Relatively small capacity
« High-performance

— Secondary storage
e Cheap
 Large capacity
« Slow

— Main memory requires careful management

9.2 Memory Organization

 Memory can be organized in different ways
— One process uses entire memory space
— Each process gets its own partition in memory
* Dynamically or statically allocated
* Trend: Application memory requirements tend to
increase over time to fill main memory capacities

9.2 Memory Organization

Figure 9.1 Microsoft Windows operating system memory requirements.

Minimum

Memory Reconmended
Operaiing Syslem Release Pate Requiremeni? Memory
Windows 1.0 November 1985 256KB
Windows 2.03 November 1987 320KB
Windows 3.0 March 1990 896KB TMB
Windows 3.1 April 1992 2.6MB 4MB
Windows 95 August 1995 8MB 1TeMB
Windows NT 4.0 August 1996 32MB 96MB
Windows 98 June 1998 24MB 04MB
Windows ME September 2000 32MB 128MB
Windows 2000 Professional February 2000 64MB 128MB
Windows XP Home October 2001 64MB 128MB
Windows XP Professional October 2001 128MB 256MB

9.3 Memory Management

 Strategies for obtaining optimal memory performance

— Performed by memory manager
* Which process will stay in memory?
« How much memory will each process have access to?
* Where in memory will each process go?

9.4 Memory Hierarchy

e Main memory

— Should store currently needed program instructions and data
only

e Secondary storage
— Stores data and programs that are not actively needed

* Cache memory
Extremely high speed
Usually located on processor itself
Most-commonly-used data copied to cache for faster access

Small amount of cache still effective for boosting performance
e Due to temporal locality

9.4 Memory Hierarchy

Figure 9.2 Hierarchical memory organization.

Storage Céche
access \
time memory
decreases. A processor
may access
programs and
il data directly.
access .
Primary
_speed memory
increases.
Storage
cost per bit |
increases. The system must first
move programs
Storage Secondary and and data to main
capacit tertiary storage memory before a
S processor may
decreases.

reference them.

9.5 Memory Management Strategies

 Strategies divided into several categories

— Fetch strategies

* Demand or anticipatory

» Decides which piece of data to load next
— Placement strategies

* Decides where in main memory to place incoming data
— Replacement strategies

* Decides which data to remove from main memory to make more
space

9.6 Contiguous vs. Noncontiguous Memory Allocation

* Ways of organizing programs in memory

— Contiguous allocation
* Program must exist as a single block of contiguous addresses
» Sometimes it 1s impossible to find a large enough block
* Low overhead

— Noncontiguous allocation
* Program divided into chunks called segments
« Each segment can be placed in different part of memory
 Easier to find “holes” in which a segment will fit

 Increased number of processes that can exist simultaneously in
memory offsets the overhead incurred by this technique

9.7 Single-User Contiguous Memory Allocation

 One user had control of entire machine
— Resources did not need to be shared

— Originally no operating systems on computer

* Programmer wrote code to perform resource management
— Input-Output Control Systems (IOCS)

 Libraries of prewritten code to manage I/0O devices

* Precursor to operating systems

9.7 Single-User Contiguous Memory Allocation

Figure 9.3 Single-user contiguous memory allocation.

0
Operating system

Unused

9.7.1 Overlays

Overlays: Programming technique to overcome
contiguous allocation limits

Program divided into logical sections

Only place currently active section in memory

Severe drawbacks

« Difficult to organize overlays to make efficient use of main
memory

« Complicates modifications to programs
Virtual memory accomplishes similar goal

» Like IOCS, VM shields programmers from complex issues such as
memory management

9.7.1 Overlays

Figure 9.4 Overlay structure.

Operating system
User program with memory
requirement larger than available
Portion of user code portion of main memory
and data that must rgeiche. B U R R R b O
remain in main 8
memory for duration P AT :
of execution Initialization Processing Output
| phase phase phase
bt b + b
o 2 BB
(2) | 'y
f‘h\‘\A | i
Ao/ I .
Overlay
area | e e
SR RCR by T eV e S T

aj) Load initialization phase at b and run.
(2) Then load processing phase at b and run.

@) Then load output phase at b and run.

‘-___——_—_—/

9.7.2 Protection in a Single-User Environment

e Operating system must not be damaged by programs
— System cannot function if operating system overwritten

— Boundary register
« Contains address where program’s memory space begins
* Any memory accesses outside boundary are denied
« Can only be set by privileged commands

 Applications can access OS memory to execute OS procedures
using system calls, which places the system in executive mode

9.7.2 Protection in a Single-User Environment

Figure 9.5 Memory protection with single-user contiguous memory allocation.

Processor

Boundary
\egister
a

Operating system

The system prevents
the user from
accessing the
addresses less than a.

9.7.3 Single-Stream Batch Processing

» Early systems required significant setup time
— Wasted time and resources

— Automating setup and teardown improved efficiency

* Batch processing

— Job stream processor reads job control languages
* Defines each job and how to set it up

9.8 Fixed-Partition Multiprogramming

* I/O requests can tie up a processor for long periods

— Multiprogramming is one solution
* Process not actively using a processor should relinquish it to others
» Requires several processes to be in memory at once

9.8 Fixed-Partition Multiprogramming

Figure 9.6 Processor utilization on a single-user system. [Note: In many single-user
jobs, 1/0 waits are much longer relative to processor utilization periods indicated
in this diagram.]

For a process doing intensive calculation:

S

Shaded area indicates
“"Processor in use.”

For a process doing regular input/output: /

s L N R e T N R

Use Use Use Use
processor processor processor processor

Wait for Wait for Wait for
I/0 completion. /0 completion. /0 completion.

9.8 Fixed-Partition Multiprogramming

* Fixed-partition multiprogramming
— Each active process receives a fixed-size block of memory
— Processor rapidly switches between each process
— Multiple boundary registers protect against damage

9.8 Fixed-Partition Multiprogramming

Figure 9.7 Fixed-partition multiprogramming with absolute translation and loading.

0
Operating system
: Job queue for partition 1
run only in . 2 e i
partition 1. Bl R et e o
Job queue for partition 2 £
These jobs — s
run only in g e Partition 2
partition 2. L ; c
Job queue for partition 3
These jobs :
run only in see T e Partition 3
partition 3.
d

9.8 Fixed-Partition Multiprogramming

« Drawbacks to fixed partitions

— Early implementations used absolute addresses
« If the requested partition was full, code could not load
 Later resolved by relocating compilers

9.8 Fixed-Partition Multiprogramming

Figure 9.8 Memory waste under fixed-partition multiprogramming with absolute
translation and loading.

Operating system
Job queue for partition 1
(No jobs

waiting for Partition 1
partition 1) (empty)

Job queue for partition 2

(No jobs
waiting for Partition 2
partition 2) (empty)

Job queue for partition 3

Partition 3
(in use)

9.8 Fixed-Partition Multiprogramming

Figure 9.8 Fixed-partition multiprogramming with relocatable translation and loading.

Operating system

Partition 1

Job queue
Partition 2

Partition 3

d

A job may be placed in any
available partition in which it fits.

9.8 Fixed-Partition Multiprogramming

 Protection

— Can be implemented by boundary registers, called base and limit
(also called low and high)

9.8 Fixed-Partition Multiprogramming

Figure 9.10 Memory protection in contiguous-allocation multiprogramming systems.

Processor

5 Currently active
partition

Operating system

Partition 1

la——"""Te | b | Low boundary

/. ¢ | High boundary

Partition 2

Partition 3

9.8 Fixed-Partition Multiprogramming

« Drawbacks to fixed partitions (Cont.)

— Internal fragmentation
» Process does not take up entire partition, wasting memory

— Incurs more overhead
 Offset by higher resource utilization

9.8 Fixed-Partition Multiprogramming

Figure 9.11 Internal fragmentation in a fixed-partition multiprogramming system.

Operating system

Partition 1

Used memory
Partition 2

Unused memory

Partition 3

9.9 Variable-Partition Multiprogramming

« System designers found fixed partitions too restrictive
— Internal fragmentation
— Potential for processes to be too big to fit anywhere
— Variable partitions designed as replacement

9.9 Variable-Partition Multiprogramming

Figure 9.12 Initial partition assignments in variable-partition programming.

Pg needs 9MB.

Pg needs 18MB.
P7 needs 11MB.
Pg needs 32MB.
Ps needs 14MB.
P4 needs 25MB.
Pz needs 1T0MB.
P; needs 20MB.
P1 needs 15MB.

Joh queue

Operating Operating Operating Operating
system system system system

Py 15MB Py 15MB Py 15MB Py 15MB

P; 20MB P; 20MB P; 20MB

P2 10MB P2 10MB

Pa 25MB

Free

9.9.1 Variable-Partition Characteristics

« Jobs placed where they fit
— No space wasted initially
— Internal fragmentation impossible
« Partitions are exactly the size they need to be

— External fragmentation can occur when processes removed
» Leave holes too small for new processes
» Eventually no holes large enough for new processes

9.9.1 Variable-Partition Characteristics

Figure 9.13 Memory “holes” in variable-partition multiprogramming.

Operating system Operating system Operating system

P, finishes
and frees its
memory.

o B

P4 finishes
and frees its
memory.

9.9.1 Variable-Partition Characteristics

Several ways to combat external fragmentation

— Coalescing
« Combine adjacent free blocks into one large block
 Often not enough to reclaim significant amount of memory

— Compaction

« Sometimes called garbage collection (not to be confused with GC
in object-oriented languages)

Rearranges memory into a single contiguous block free space and a
single contiguous block of occupied space

Makes all free space available
Significant overhead

9.9.1 Variable-Partition Characteristics

Figure 9.14 Coalescing memory “holes” in variable-partition multiprogramming.

Operating system Operating system Operating system

Other
processes

2MB hole

P, (5MB)

Other
processes

¢ I v

P1 finishes
and frees
its
memory.

Other
processes

2MB hole

5MB hole

Other
processes

Operating
system
combines
adjacent
holes to
form a
single

larger hole.

Other
processes

7MB hole

Other
processes

9.9.1 Variable-Partition Characteristics

Figure 9.15 Memory compaction in variable-partition multiprogramming.

Operating system Operating system

IHUsE e e e In use

In use
Free /
A In use

Free

Operating system places

all “in use” blocks together
leaving free memory as a
single large hole.

9.9.2 Memory Placement Strategies

 Where to put incoming processes

— First-fit strategy
* Process placed in first hole of sufficient size found
« Simple, low execution-time overhead

— Best-fit strategy
* Process placed in hole that leaves least unused space around it
* More execution-time overhead

— Worst-fit strategy
* Process placed in hole that leaves most unused space around it

» Leaves another large hole, making it more likely that another
process can fit in the hole

9.9.2 Memory Placement Strategies

Figure 9.16 First-fit, best-fit and worst-fit memory placement strategies (Part 1 of 3).

(a) First-fit strategy 0 :
Place job in first memory hole on 1 Operating system
free memory list in which it will fit. _ 16MB hole
b
Free Memory List (Kept in random order.) In use
C
Start 14MB hole
address Length d I
o I Request for a e i
& ot 13MB e ;| 5MB hole
= 5MB
In use
C 14MB g
g 30MB 30MB hole
[
: h ¢ S

9.9.2 Memory Placement Strategies

Figure 9.16 First-fit, best-fit and worst-fit memory placement strategies (Part 2 of 3).

(b) Best-fit strategy 0 ;
Place process in the smallest L EHeTaUnUS e
possible hole in which it will fit. : 16MB hole
Free Memory List (Kept in ascending order In use
by hole size.) e
Start : . 14MB hole
address Length d
Request for . In use
e 5MB Fo e o8 ANB MR - 5MB hole
I |
,i Ly EME In use
a 16MB g
g 30MB : 5 30MB hole
: - h

9.9.2 Memory Placement Strategies

Figure 9.16 First-fit, best-fit and worst-fit memory placement strategies (Part 3 of 3).

(c) Worst-fit strategy 0 : !
: Operating system|
Place process in the largest 3
possible hole in which it will fit. 16MB hole
b
Free Memory List (Kept in descending order / In use
Start R o eec) 14MB hole |
address Length d
| | Request for e il
oy e v R vt (Y R 5 AR
a 16MB T
& 14MB g
e 5MB » 30MB hole
»
H h |

9.10 Multiprogramming with Memory Swapping

« Not necessary to keep 1nactive processes in memory
— Swapping

* Only put currently running process in main memory
— Others temporarily moved to secondary storage
— Maximizes available memory
— Significant overhead when switching processes

 Better yet: keep several processes in memory at once
— Less available memory
— Much faster response times
— Similar to paging

9.10 Multiprogramming with Memory Swapping

Figure 9.17 Multiprogramming in a swapping system in which only a single process at
a time is in main memory.

Main memory images stored on :
secondary, direct-access storage. 0 Main memory

Operating system

Swapping area

. Only one process at a time resides in main memaory.

. That process runs until
a) /O is issued,
b) timmer runs out or
c) voluntary termination.

. System then swaps out the process by copying the
swapping area (main memory) to secondary storage.

. System swaps in next process by reading that process’s
main memaory image into the swapping area. The new
process runs until it is eventually swapped out and the
next user is swapped in, and so on.

