
IRIS DATA ANALYSIS USING BACK
PROPAGATION NEURAL NETWORKS

Sean Van Osselaer

Murdoch University, Western Australia

ABSTRACT

This project paper refers to experiments towards the
classification of Iris plants with back propagation neural
networks (BPNN). The problem concerns the
identification of Iris plant species on the basis of plant
attribute measurements. The paper outlines background
information concerning the problem, making reference to
statistics and value constraints identified in the course of
the project. There is an outline of the algorithm of
techniques used within the project, with descriptions of
these techniques and their context. A discussion
concerning the experimental setup is included, describing
the implementation specifics of the project, preparatory
actions, and the experimental results. The results generated
by the networks constructed are presented, with the results
being discussed and compared towards identification of
the fittest architecture for the problem constrained by the
data set. In conclusion, the fittest architecture is identified,
and a justification concerning its selection offered.

Keywords : Iris, back propagation neural network,
BPNN

INTRODUCTION

This project paper is related to the use of back propagation
neural networks (BPNN) towards the identification of iris
plants on the basis of the following measurements: sepal
length, sepal width, petal length, and petal width. There is
a comparison of the fitness of neural networks with input
data normalised by column, row, sigmoid, and column
constrained sigmoid normalisation. Also contained within
the paper is an analysis of the performance results of back
propagation neural networks with various numbers of
hidden layer neurons, and differing number of cycles
(epochs). The analysis of the performance of the neural
networks is based on several criteria: incorrectly identified
plants by training set (recall) and testing set (accuracy),
specific error within incorrectly identified plants, overall
data set error as tested, and class identification precision.
The fittest network architecture identified used column
normalisation, 40000 cycles, 1 hidden layer with 9 hidden
layer neurons, a step width of 0.15, a maximum non-
propagated error of 0.1, and a value of 1 for the number of
update steps.

BACKGROUND

This project makes use of the well known Iris dataset,
which refers to 3 classes of 50 instances each, where each
class refers to a type of Iris plant. The first of the classes
is linearly distinguishable from the remaining two, with
the second two not being linearly separable from each
other. The 150 instances, which are equally separated
between the 3 classes, contain the following four numeric
attributes: sepal length and width, petal length and width.
A sepal is a division in the calyx, which is the protective
layer of the flower in bud, and a petal is the divisions of
the flower in bloom. The minimum values for the raw data
contained in the data set are as follows (measurements in
centimetres): sepal length (4.3), sepal width (2.0), petal
length (1.0), and petal width (0.1). The maximum values
for the raw data contained in the data set are as follows
(measurements in centimetres): sepal length (7.9), sepal
width (4.4), petal length (6.9), and petal width (2.5). In
addition to these numeric attributes, each instance also
includes an identifying class name, each of which is one of
the following: Iris Setosa, Iris Versicolour, or Iris
Virginica.

ALGORITHM OF TECHNIQUE
USE

Data set construction
This project uses a two data set approach. The first of these
sets is the training set, which is used for the actual training
of the network, and for the determination of the networks
recall ability. The second data set is the testing data set,
which is not used in the training process, and is used to test
the networks level of generalisation. This is done through
the analysis of the accuracy achieved through testing
against this set.

Normalisation
Normalisation of input data is used for ranging of values
within an acceptable scope, and region. There are many
mechanisms towards this end, four of which are analysed
in this project. The four techniques used are column, row,
sigmoid, and column constrained sigmoid normalisation.

Back propagation neural
network (BPNN)
This project uses various back propagation neural
networks (BPNN). BPNN use a supervised learning
mechanism, and are constructed from simple
computational units referred to as neurons. Neurons are
connected by weighted links that allow for communication
of values. When a neuron’s signal is transmitted, it is
transmitted along all of the links that diverge from it.

These signals terminate at the incoming connections with
the other neurons in the network. The typical architecture
for a BPNN is illustrated in Figure 1.

Figure 1. The architecture of a BPNN

In a BPNN, learning is initiated with the presentation of a
training set to the network. The network generates an
output pattern, and compares this output pattern with the
expected result. If an error is observed, the weightings
associated with the links between neurons are adjusted to
reduce this error. The learning algorithm utilized has two
stages. The first of these stages is when the training input
pattern is presented to the network input layer. The
network propagates the input pattern from layer to layer
until the output layer results are generated. Then, if the
results differ from the expected, an error is calculated, and
then transmitted backwards through the network to the
input layer. It is during this process that the values for the
weights are adjusted to reduce the error encountered. This
mechanism is repeated until a terminating condition is
achieved.

The algorithm towards the training of the network is as
follows, and is adapted from “Artificial Intelligence – A
Guide to intelligent Systems” by M. Negnevitsky [1]:

• Step 1: Initialisation
The weights and threshold values for the network are
assigned values that are uniformly distributed over a small
range eg: determined using the Haykin approach identified
by Eq1.

Eq1. ⎟
⎠
⎞⎜

⎝
⎛ +−

ii F
2.4,

F
2.4

Where Fi is equivalent to the number of inputs to a neuron
i. The initialisation of the weights mentioned is performed
on each neuron within the network individually.

• Step 2: Activation
It is at this point that input values from a training set are
presented to the networks input layer neurons, and the
expected output values that are declared within the set
qualified.

The networks hidden layer neurons then calculate their
outputs. The calculation involved in this process is
described by Eq2.

Eq2. ⎥
⎦

⎤
⎢⎣
⎡ −×= ∑

=

n

1i
jijij θ(P)W(P)Xsigmoid(P)Y

Where P is the P th training pattern in the training set, n is
the number of inputs of the j th neuron in the hidden layer,
Xi is an input into a neuron, and Yj is the resulting output.
The Wij is the weighting, and the θj is the threshold value.
The “sigmoid” in the above refers to the sigmoid function
that is defined in Eq3.

Eq3.
xsigmoid

e1
1Y −+

=

When it comes to the calculation of the eventual outputs of
the output layer neurons, the calculation described by Eq4
is used towards the development of said outputs.

Eq4.
⎥
⎥
⎦

⎤
⎢
⎣

⎡
−×= ∑

=

m

1j
kjkjkk θ(P)W(P)Xsigmoid(P)Y

Where P is the P th training pattern in the training set, m is
the number of inputs of the k th neuron in the output layer,
Xjk is an input into a neuron, and Yk is the resulting output.
The Wjk is the weighting, and the θk is the threshold value.
The “sigmoid” in the above refers to the sigmoid function
that is defined in Eq3.

• Step 3: Update weights
This is the step in which the weights of the BPNN are
updated through the process of propagating backwards the
errors related to the output neuron results. The calculation
of the error gradient for the output neurons is calculated
through Eq5.

Eq5. [] (P)e(P)Y1(P)Y(P)δ kkkk ×−×=

Where:

(P)]Xexp[1
1(P)y

(P)Y(P)Y(P)e

k
k

kkd,k

−+
=

−=

δk is the error gradient for the kth output neuron and P is
the Pth pattern file.

With the weight adjustments for the output neurons being
calculated by Eq6.

Eq6. (P)ΔW(P)W1)(PW jkjkjk +=+
Where: (P)δ(P)Yα(P)ΔW kjjk ××=

The calculation of the error gradient for the hidden
neurons is calculated through Eq7.

Eq7. [] ∑
=

×−×=
l

1k

jkkjjj (P)W(P)δ(P)Y1(P)Y(P)δ

1

2

j

l m

k

2

1 X1

X2

Xi

Xn

Y1

Y2

Yk

Yl

1

2

i

n

Input layer Hidden layer Output layer

With the weight adjustments for the output neurons being
calculated by Eq8.

Eq8. (P)ΔW(P)W1)(PW ijijij +=+
Where: (P)δ(P)Xα(P)ΔW jiij ××=

• Step 4: Iteration

Increment the value of P by 1, and return to the second
step of the process. This iterative process is conditional
upon a terminating condition, if the terminating condition
is realised, the training is complete, and the algorithm
terminates.

DISCUSSION AND RESULTS
OF EXPERIMENTAL SET UP

Data set construction
This projects initial activity was towards the separation of
the consolidated data set, into a training set, and a testing
set. It was decided to use a 2/3 training 1/3 testing approach,
taking into consideration equal separation of representation
between the classes within the sets. To this end, the
training set was constructed of the first 2 of every 3
patterns contained in a class, with the remaining being
allocated to the testing set. This resulted is a 102 pattern
training set, and a 48 pattern testing set.

Normalisation
For the purpose of the project, four normalisation
techniques were analysed, with the acceptable range for
the normalised values being set to an approximation of
0.01(inclusive) to 0.99(exclusive).

• Column normalisation
In this normalisation technique, the largest value identified
for an attribute is used as a divisor. For the project, a Java
program was developed to generate a multiplier value to
range the data to an approximation of, but not outside of
the threshold range. An adding component was also
generated by the program towards moving the ranged data
into the appropriate region. The implementation was
evaluated as shown in Eq9.

Eq9. adder(x)
(x)multipliermax(x)

xixi +⎟⎟⎠

⎞
⎜⎜⎝

⎛
×

=

Where xi is an instance of x, max(x) is the largest
identified value for x, multiplier(x) is the coefficient
developed for ranging of the data, and adder(x) is the
adding component developed for placing the ranged data
into the appropriate region.

In the implementation of the column normalisation, the
multipliers and adders shown in Table I were evaluated.

COLUMN NORMALISATION

 Multiplier Adder
Sepal length 0.46999999999999953 -1.1479999999999844
Sepal width 0.5599999999999996 -0.8010000000000006
Petal length 0.8799999999999999 -0.1540000000000001
Petal width 0.99 -0.03000000000000002
Table I. The multipliers and adders evaluated for the

column normalisation

Table II is a summary of the results of the column
normalisation.

COLUMN NORMALISATION SUMMARY
 Min Norm Max Norm
Sepal length 0.0101 0.9797
Sepal width 0.0107 0.9847
Petal length 0.0107 0.9824
Petal width 0.0104 0.9801

Table II: summary of the results of the column
normalisation

• Row normalisation

This technique involves using the combined total of the
attributes across a pattern as a divisor. For the project, the
multiplying coefficient and adding component where
generated by a Java program for each row individually, as
outlined in Eq10.

Eq10.

x))adder(row(
x))total(row(

x(row(x))multiplierx +⎟⎟⎠

⎞
⎜⎜⎝

⎛
⎟⎟⎠

⎞
⎜⎜⎝

⎛
×=

Where x is a value in a row, multiplier (row(x)) is the
coefficient developed for ranging the rows values,
total(row(x)) is the total of the values in the row, and
adder(row(x)) is the adding component developed for
placing the data into the appropriate region.

In the implementation of the row normalisation, the
multiplier and adder were generated row by row, with the
highest value assigned across the data set being 0.9899,
and the lowest 0.01.

• Sigmoid normalisation

This normalisation method involves using the sigmoid
function, identified in Eq3, on the data values so as to
“squash” the values into the appropriate range. The Java
program developed for the project was used to generate a
multiplying coefficient, and an adding component for the
function. This was developed in an effort to spread the
range of the values to better fill the range defined by the
thresholds, and to move the values into the appropriate
region. The sigmoid function was implemented as
illustrated in Eq11.

Eq11. adder
e1
1multiplierx x +⎟

⎠
⎞⎜

⎝
⎛

+
×= −

Where x is the value to be normalised, multiplier is the
coefficient developed for ranging of the values, and adder
is the adding component for placing the data into the
appropriate region.

In the implementation of the sigmoid normalisation, the
multiplier was determined to be 2.0599999999999996, and
the adder to be -1.0709999999999928. Table III is a
summary of the results.

SIGMOID NORMALISATION SUMMARY
 Min Norm Max Norm
Sepal length 0.9614 0.9882
Sepal width 0.7434 0.9640
Petal length 0.4350 0.9869
Petal width 0.0105 0.8327

Table III: summary of the results of the sigmoid
normalisation

• Column constrained sigmoid

normalisation
This normalisation technique is essentially a modification
of the aforementioned sigmoid normalisation function
implementation. However, in this implementation, the
program developed coefficient and adding component are
developed by attribute, rather than over the entire data set.
The implementation is outlined in Eq12.

Eq12. adder(x)
e1
1(x)multiplierxi xi +⎟

⎠
⎞⎜

⎝
⎛

+
×= −

Where xi is an instance of x, multiplier(x) is the coefficient
developed for ranging of the values of x, and adder(x) is
the adding component developed for placing the ranged
values of x into the appropriate region.

In the implementation of the column constrained sigmoid
normalisation, the multipliers and adders shown in table
IV were evaluated.

COLUMN CONSTRAINED SIGMOID
NORMALISATION

 Multiplier Adder
Sepal length 75.21000000000157 -74.1929999999902
Sepal width 9.13999999999985 -8.040000000000983
Petal length 3.6499999999999657 -2.6579999999998183
Petal width 2.4499999999999913 -1.2759999999999703

Table IV. The multipliers and adders determined in the
sigmoid normalisation

Table V is a summary of the results of the column
constrained sigmoid normalisation.

COLUMN CONSTRAINED SIGMOID
NORMALISATION SUMMARY

 Min Norm Max Norm
Sepal length 0.0102 0.9891
Sepal width 0.0105 0.9891
Petal length 0.0104 0.9883
Petal width 0.0102 0.9881

Table V: summary of the results of the column
constrained sigmoid normalisation

Testing
In the analysis of the performance of the neural networks,
several measuring criteria were utilized. The number of
patterns that were incorrectly identified in the training set
(recall), and testing set (accuracy) were evaluated. The
class identification precision was used in conjunction with
the recall/accuracy, and was computed by dividing the
expected number of identified patterns for a class, by the
value of patterns that were actually identified as being of
that class. The overall set error as tested was also used, and
was evaluated through Eq13.

Eq13. {∑
= ≠++

=−+
=

m

1i iii

iii

1X,TX
1X,TX

Error
Error
Error

Where m is the number of patterns in a data set, Xi is the
expected result for an output neuron i, and Ti is the actual
output from that output neuron.

The specific error within incorrectly identified patterns
was also used as a gauge for network performance, with
the measure being the values generated from the networks
output neurons during testing. These values were used as a
point of comparison between networks.

METHODOLOGY TOWARDS
IDENTIFYING THE NETWORK
ARCHITECTURE AND
LEARNING PARAMETERS

The three classes of Iris were allocated bit string
representation as shown in table VI.

Classifications Bit string
Iris-setosa 1 0 0
Iris-versicolor 0 1 0
Iris-virginica 0 0 1

Table VI. Classifications and their bit string
representation

The bit strings represent the expected activation of the
output neurons in regards to a pattern, and are used in the
training, and the testing of the networks.

Stage 1
The networks constructed during the first stage of the
network architecture development where constructed using
the four input, and three output neurons necessitated by the
problem domain, and networks with hidden layer neurons
numbering 3, 4, 5, 6, 7, 8, and 9. The initial value for the
cycles was 100, with the other variables being left at the
JavaNNS defaults. The column normalised values proved
to be the fittest in the comparison of the normalisation
techniques. The poor results from the analysis of these
initial networks lead to the decision to increase the number
of cycles.

The value for the cycles was increased to 1000. The results
showed improvement, with the plotting of the
misidentified patterns, from both the testing and training

sets against the number of hidden nodes demonstrating an
improvement of the results with an increase in the number
of hidden neurons, as shown in Figure 2.

Misidentified Patterns vs Hidden Neurons

0

2

4

6

8

10

12

14

H3 H4 H5 H6 H7 H8 H9

Hidden Neurons

M
is

id
en

tif
ie

d
Pa

tte
rn

s traincolsigmoid
testcolsigmoid
traincolumn
testcolumn
trainrow
testrow
trainsigmoid
testsigmoid

Figure 2. Misidentified Patterns vs Hidden Neurons

Plotting of the training and testing sets overall data set
errors also demonstrated improvement of results with
increases in the number of hidden layer neurons. Some
informal networks generated for the purpose of identifying
an appropriate number of cycles identified 70000 as a
point of improvement under the constraints of nine hidden
neurons, and column normalisation.

Stage 2
The second stage of the network architecture development
consisted of the construction of networks for each of the
normalisation techniques with 3, 6 and 9 hidden layer
neurons, utilizing 10,000/ 20,000/ …/ 80,000 cycles. At
this stage the networks continued to be developed with the
default values from JavaNNS. The results derived from the
fittest examples from each normalisation technique were
plotted against each other so as to identify the
normalisation technique with the best performance. The
normalisation technique with the best results was
demonstrated to be that of column normalisation as shown
in Figure 3.

Misidentified Patterns vs Cycles
(comparison of normalisation techniques)

0

1

2

3

4

5

6

7

8

9

10
00

0
20

00
0

30
00

0
40

00
0

50
00

0
60

00
0

70
00

0
80

00
0

Cycles

M
is

id
en

tif
ie

d
Pa

tte
rn

s colsigmoid (H9train)
colsigmoid (H9test)
column (H9train)
column (H9test)
row (H9train)
row (H9test)
sigmoid (H9train)
sigmoid (H9test)

Figure 3. Misidentified Patterns vs Cycles

A comparison of the best stage 2 results for the
different normalisation techniques

Stage 3

The third and final stage towards the development of the
network architecture involved the generation of networks
with 8, 9, 10, 12, and 15 hidden neurons, and step widths
of 0.1, 0.15, and 0.2. Each network was trained over
40000, 80000, and 120000 cycles, with the maximum non-
propagated error set at 0.1, and the number of update steps
to 1. The results from the analysis of the results, as shown
in Table VII, were used towards the identification of the
fittest network for the iris classification problem.

Step Width 0.2 0.15 0.1
Cycles
(*10000) 4 8 12 4 8 12 4 8 12

Misidentified
patterns in:
Train H8 2 2 1 2 1 1 1 1 1
Test H8 1 1 1 1 1 1 1 1 1
Train H9 2 1 1 1 1 1 1 1 1
Test H9 1 1 1 1 1 1 1 1 1
Train H10 2 1 1 1 1 1 1 1 1
Test H10 1 1 1 1 1 1 1 1 1
Train H12 2 1 1 1 1 1 1 1 1
Test H12 1 1 1 1 1 1 1 1 1
Train H15 1 1 1 1 1 1 1 1 1
Test H15 1 1 1 1 1 1 1 1 1
Table VII. A comparison between the misidentified
patterns from networks with differing numbers of

hidden layer (H), and step width.

CONCLUSIONS

The fittest network architecture used column
normalisation, 40000 cycles, 1 hidden layer with 9 hidden
neurons, a step width of 0.15, a maximum non-propagated
error of 0.1, and a value of 1 for the number of update
steps.

The reasoning for the selection of the 9 hidden neurons
was based in part on the following text from “Grouping
parts with a neural network” by Chung, Y and Kusiak, A
[2]:

Hecht-Nielson (16) found that 2N+1 hidden neurons,
where N is the number of inputs, are required for a
one-hidden-layer back propagation network.

As the number of inputs is four, the required number of
hidden neurons was calculated to be nine. Other
contributing factors towards the decision to restrict the
hidden layer to 9 hidden neurons were identified. One of
these factors related to the rate of change in the overall set
errors. The overall set errors for the networks with 8, 9,
and 10 hidden neurons, shown in table VIII, shows a
marked deceleration in the depreciation of the error. This
particular example is in the context of a step width of 0.15,
a non-propagated error of 0.1, and a value of 1 for the
number of update steps.

Cycles
Train

Test

 H8
40000 45.8743 21.8767
80000 45.2341 21.6376
120000 44.9451 21.5327
 H9
40000 45.5431 21.7035
80000 44.9928 21.504
120000 44.6686 21.3828
 H10
40000 45.3209 21.588
80000 44.8112 21.398
120000 44.4725 21.2682
Table VIII. A comparison between differing numbers
of hidden neuron (H), and the associated overall set

errors (in the context of the number of cycles).
Note: Step width of 0.15, a non-propagated error of 0.1,

and a number of update steps of 1

Another reason for the decision to use nine hidden neurons
is in reference to the specific error of the patterns
incorrectly identified. Table IX shows the error for the
incorrectly identified training pattern in the networks with
9 and 10 hidden neurons. Due to the increase in all of the
output neurons values, it was judged to be inefficient to
increase the number of hidden neurons beyond nine. The
network with 8 hidden neurons was discarded due to a
poorer performance in the identification of the patterns
under the constraints of a 40000 cycle training regime.

Cycles of 40000, step width of 0.15, a non-
propagated error of 0.1, and a number of update

steps of 1

Hidden neurons: 9
 Pattern: 57 is incorrect!!!!!!!!!!!!
Expected 0 1 0
Actual 0 0 1
Results as
generated 0.00212 0.41811 0.80217

Hidden neurons: 10

 Pattern: 57 is incorrect!!!!!!!!!!!!
Expected 0 1 0
Actual 0 0 1
Results as
generated 0.00213 0.41825 0.80385
Table IX. The error within the incorrectly identified

training pattern of the networks with 9 and 10 hidden
neurons

Note: Step width of 0.15, a non-propagated error of 0.1,
and a number of update steps of 1

The step width of 0.15 was decided upon as a result of the
comparison between the results achieved under the
conditions of a step width of 0.1, 0.15, and 0.2. The
results, shown in Table X, demonstrate that the overall set
error was least in the vicinity of the step width of 0.15.

Step width H9
0.1 45.8052 21.7768

0.15 45.5431 21.7035
0.2 45.7166 21.8375

Table X. A comparison between step widths of 0.1,
0.15, and 0.2 in the 9 neuron hidden layer neural

network

This network has been developed towards being able to
identify Iris classifications on the basis of the attributes
supplied. It is assumed that the data set is a fair reflection
of the populations they represent, and that the efficiency of
the network structure, as well as the efficiency of the
training, are of importance.

ACKNOWLEDGEMENTS:

• Iris Plants Database
Creator: R.A. Fisher
Donor: Michael Marshall

REFERENCES:

[1] Negnevitsky, M. Artificial Intelligence: A Guide

to Intelligent Systems, First Edition, Harlow,
Pearson Eduction, 2002, Page 175-178.

[2] Chung, E. Kusiak, A. Grouping parts with a

neural network, “Journal of Manufacturing
Systems[Full Text], volume 13, issue 4, Page
262, Available ProQuest, 02786125 , 20-04-
2003”.

