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ABSTRACT 
 
This project paper refers to experiments towards the 
classification of Iris plants with back propagation neural 
networks (BPNN). The problem concerns the 
identification of Iris plant species on the basis of plant 
attribute measurements.  The paper outlines background 
information concerning the problem, making reference to 
statistics and value constraints identified in the course of 
the project. There is an outline of the algorithm of 
techniques used within the project, with descriptions of 
these techniques and their context.  A discussion 
concerning the experimental setup is included, describing 
the implementation specifics of the project, preparatory 
actions, and the experimental results. The results generated 
by the networks constructed are presented, with the results 
being discussed and compared towards identification of 
the fittest architecture for the problem constrained by the 
data set. In conclusion, the fittest architecture is identified, 
and a justification concerning its selection offered.  
 
Keywords : Iris, back propagation neural network, 
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INTRODUCTION 
 
This project paper is related to the use of back propagation 
neural networks (BPNN) towards the identification of iris 
plants on the basis of the following measurements: sepal 
length, sepal width, petal length, and petal width. There is 
a comparison of the fitness of neural networks with input 
data normalised by column, row, sigmoid, and column 
constrained sigmoid normalisation. Also contained within 
the paper is an analysis of the performance results of back 
propagation neural networks with various numbers of 
hidden layer neurons, and differing number of cycles 
(epochs). The analysis of the performance of the neural 
networks is based on several criteria: incorrectly identified 
plants by training set (recall) and testing set (accuracy), 
specific error within incorrectly identified plants, overall 
data set error as tested, and class identification precision. 
The fittest network architecture identified used column 
normalisation, 40000 cycles, 1 hidden layer with 9 hidden 
layer neurons, a step width of 0.15, a maximum non-
propagated error of 0.1, and a value of 1 for the number of 
update steps. 
 
 
 
 
 
BACKGROUND 

 
This project makes use of the well known Iris dataset, 
which refers to 3 classes of 50 instances each, where each 
class refers to a type of Iris plant.  The first of the classes 
is linearly distinguishable from the remaining two, with 
the second two not being linearly separable from each 
other. The 150 instances, which are equally separated 
between the 3 classes, contain the following four numeric 
attributes: sepal length and width, petal length and width. 
A sepal is a division in the calyx, which is the protective 
layer of the flower in bud, and a petal is the divisions of 
the flower in bloom. The minimum values for the raw data 
contained in the data set are as follows (measurements in 
centimetres): sepal length (4.3), sepal width (2.0), petal 
length (1.0), and petal width (0.1). The maximum values 
for the raw data contained in the data set are as follows 
(measurements in centimetres): sepal length (7.9), sepal 
width (4.4), petal length (6.9), and petal width (2.5).  In 
addition to these numeric attributes, each instance also 
includes an identifying class name, each of which is one of 
the following: Iris Setosa, Iris Versicolour, or Iris 
Virginica. 
 
ALGORITHM OF TECHNIQUE 
USE 
 
Data set construction 
This project uses a two data set approach. The first of these 
sets is the training set, which is used for the actual training 
of the network, and for the determination of the networks 
recall ability. The second data set is the testing data set, 
which is not used in the training process, and is used to test 
the networks level of generalisation. This is done through 
the analysis of the accuracy achieved through testing 
against this set. 
 
Normalisation 
Normalisation of input data is used for ranging of values 
within an acceptable scope, and region. There are many 
mechanisms towards this end, four of which are analysed 
in this project. The four techniques used are column, row, 
sigmoid, and column constrained sigmoid normalisation.  
 
Back propagation neural 
network (BPNN) 
This project uses various back propagation neural 
networks (BPNN). BPNN use a supervised learning 
mechanism, and are constructed from simple 
computational units referred to as neurons. Neurons are 
connected by weighted links that allow for communication 
of values. When a neuron’s signal is transmitted, it is 
transmitted along all of the links that diverge from it. 



These signals terminate at the incoming connections with 
the other neurons in the network. The typical architecture 
for a BPNN is illustrated in Figure 1. 

 
Figure 1. The architecture of a BPNN 

 
In a BPNN, learning is initiated with the presentation of a 
training set to the network. The network generates an 
output pattern, and compares this output pattern with the 
expected result. If an error is observed, the weightings 
associated with the links between neurons are adjusted to 
reduce this error. The learning algorithm utilized has two 
stages. The first of these stages is when the training input 
pattern is presented to the network input layer. The 
network propagates the input pattern from layer to layer 
until the output layer results are generated. Then, if the 
results differ from the expected, an error is calculated, and 
then transmitted backwards through the network to the 
input layer. It is during this process that the values for the 
weights are adjusted to reduce the error encountered. This 
mechanism is repeated until a terminating condition is 
achieved.     
 
The algorithm towards the training of the network is as 
follows, and is adapted from “Artificial Intelligence – A 
Guide to intelligent Systems” by M. Negnevitsky [1]: 
 

• Step 1: Initialisation 
The weights and threshold values for the network are 
assigned values that are uniformly distributed over a small 
range eg: determined using the Haykin approach identified 
by Eq1. 
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Where Fi is equivalent to the number of inputs to a neuron 
i. The initialisation of the weights mentioned is performed 
on each neuron within the network individually. 
 

• Step 2: Activation 
It is at this point that input values from a training set are 
presented to the networks input layer neurons, and the 
expected output values that are declared within the set 
qualified. 
 
The networks hidden layer neurons then calculate their 
outputs. The calculation involved in this process is 
described by Eq2. 
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Where P is the P th training pattern in the training set, n is 
the number of inputs of the j th neuron in the hidden layer, 
Xi  is an input into a neuron, and Yj is the resulting output. 
The Wij is the weighting, and the θj is the threshold value. 
The “sigmoid” in the above refers to the sigmoid function 
that is defined in Eq3. 
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When it comes to the calculation of the eventual outputs of 
the output layer neurons, the calculation described by Eq4 
is used towards the development of said outputs. 
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Where P is the P th training pattern in the training set, m is 
the number of inputs of the k th neuron in the output layer, 
Xjk is an input into a neuron, and Yk is the resulting output. 
The Wjk is the weighting, and the θk is the threshold value. 
The “sigmoid” in the above refers to the sigmoid function 
that is defined in Eq3. 
 

• Step 3: Update weights 
This is the step in which the weights of the BPNN are 
updated through the process of propagating backwards the 
errors related to the output neuron results. The calculation 
of the error gradient for the output neurons is calculated 
through Eq5. 
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δk is the error gradient for the kth output neuron and P is 
the Pth pattern file.  
 
With the weight adjustments for the output neurons being 
calculated by Eq6. 
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The calculation of the error gradient for the hidden 
neurons is calculated through Eq7. 
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With the weight adjustments for the output neurons being 
calculated by Eq8. 
 

Eq8. (P)ΔW(P)W1)(PW ijijij +=+  
Where: (P)δ(P)Xα(P)ΔW jiij ××=  

 
• Step 4: Iteration 

Increment the value of P by 1, and return to the second 
step of the process. This iterative process is conditional 
upon a terminating condition, if the terminating condition 
is realised, the training is complete, and the algorithm 
terminates. 
 
DISCUSSION AND RESULTS 
OF EXPERIMENTAL SET UP 
 
Data set construction 
This projects initial activity was towards the separation of 
the consolidated data set, into a training set, and a testing 
set. It was decided to use a 2/3 training 1/3 testing approach, 
taking into consideration equal separation of representation 
between the classes within the sets. To this end, the 
training set was constructed of the first 2 of every 3 
patterns contained in a class, with the remaining being 
allocated to the testing set. This resulted is a 102 pattern 
training set, and a 48 pattern testing set. 
 
Normalisation 
For the purpose of the project, four normalisation 
techniques were analysed, with the acceptable range for 
the normalised values being set to an approximation of 
0.01(inclusive) to 0.99(exclusive). 
 

• Column normalisation 
In this normalisation technique, the largest value identified 
for an attribute is used as a divisor. For the project, a Java 
program was developed to generate a multiplier value to 
range the data to an approximation of, but not outside of 
the threshold range. An adding component was also 
generated by the program towards moving the ranged data 
into the appropriate region. The implementation was 
evaluated as shown in Eq9. 
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Where xi is an instance of x, max(x) is the largest 
identified value for x, multiplier(x) is the coefficient 
developed for ranging of the data, and adder(x) is the 
adding component developed for placing the ranged data 
into the appropriate region. 
 
In the implementation of the column normalisation, the 
multipliers and adders shown in Table I were evaluated. 
 
 
 
 
 

COLUMN NORMALISATION 

 Multiplier Adder 
Sepal length 0.46999999999999953 -1.1479999999999844 
Sepal width 0.5599999999999996 -0.8010000000000006 
Petal length 0.8799999999999999 -0.1540000000000001 
Petal width 0.99 -0.03000000000000002 
Table I. The multipliers and adders evaluated for the 

column normalisation  
 
Table II is a summary of the results of the column 
normalisation. 
 

COLUMN NORMALISATION SUMMARY 
 Min Norm Max Norm 
Sepal length 0.0101 0.9797 
Sepal width 0.0107 0.9847 
Petal length 0.0107 0.9824 
Petal width 0.0104 0.9801 

Table II: summary of the results of the column 
normalisation 

 
• Row normalisation 

This technique involves using the combined total of the 
attributes across a pattern as a divisor. For the project, the 
multiplying coefficient and adding component where 
generated by a Java program for each row individually, as 
outlined in Eq10. 
 

Eq10.

x))adder(row(
x))total(row(

x(row(x))multiplierx +⎟⎟⎠

⎞
⎜⎜⎝

⎛
⎟⎟⎠

⎞
⎜⎜⎝

⎛
×=  

 
Where x is a value in a row, multiplier (row(x)) is the 
coefficient developed for ranging the rows values, 
total(row(x)) is the total of the values in the row, and 
adder(row(x)) is the adding component developed for 
placing the data into the appropriate region. 
 
In the implementation of the row normalisation, the 
multiplier and adder were generated row by row, with the 
highest value assigned across the data set being 0.9899, 
and the lowest 0.01. 

 
• Sigmoid normalisation 

This normalisation method involves using the sigmoid 
function, identified in Eq3, on the data values so as to 
“squash” the values into the appropriate range. The Java 
program developed for the project was used to generate a 
multiplying coefficient, and an adding component for the 
function. This was developed in an effort to spread the 
range of the values to better fill the range defined by the 
thresholds, and to move the values into the appropriate 
region. The sigmoid function was implemented as 
illustrated in Eq11. 
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Where x is the value to be normalised, multiplier is the 
coefficient developed for ranging of the values, and adder 
is the adding component for placing the data into the 
appropriate region. 
   
In the implementation of the sigmoid normalisation, the 
multiplier was determined to be 2.0599999999999996, and 
the adder to be -1.0709999999999928. Table III is a 
summary of the results. 
 

SIGMOID NORMALISATION SUMMARY 
 Min Norm Max Norm 
Sepal length 0.9614 0.9882 
Sepal width 0.7434 0.9640 
Petal length 0.4350 0.9869 
Petal width 0.0105 0.8327 

Table III: summary of the results of the sigmoid 
normalisation 

 
• Column constrained sigmoid 

normalisation 
This normalisation technique is essentially a modification 
of the aforementioned sigmoid normalisation function 
implementation. However, in this implementation, the 
program developed coefficient and adding component are 
developed by attribute, rather than over the entire data set. 
The implementation is outlined in Eq12. 
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Where xi is an instance of x, multiplier(x) is the coefficient 
developed for ranging of the values of x, and adder(x) is 
the adding component developed for placing the ranged 
values of x into the appropriate region. 
 
In the implementation of the column constrained sigmoid 
normalisation, the multipliers and adders shown in table 
IV were evaluated. 
 

COLUMN CONSTRAINED SIGMOID 
NORMALISATION 

 Multiplier Adder 
Sepal length 75.21000000000157 -74.1929999999902 
Sepal width 9.13999999999985 -8.040000000000983 
Petal length 3.6499999999999657 -2.6579999999998183 
Petal width 2.4499999999999913 -1.2759999999999703 

Table IV. The multipliers and adders determined in the 
sigmoid normalisation  

 
Table V is a summary of the results of the column 
constrained sigmoid normalisation. 
 

COLUMN CONSTRAINED SIGMOID 
NORMALISATION SUMMARY 

 Min Norm Max Norm 
Sepal length 0.0102 0.9891 
Sepal width 0.0105 0.9891 
Petal length 0.0104 0.9883 
Petal width 0.0102 0.9881 

Table V: summary of the results of the column 
constrained sigmoid normalisation 

Testing 
In the analysis of the performance of the neural networks, 
several measuring criteria were utilized. The number of 
patterns that were incorrectly identified in the training set 
(recall), and testing set (accuracy) were evaluated. The 
class identification precision was used in conjunction with 
the recall/accuracy, and was computed by dividing the 
expected number of identified patterns for a class, by the 
value of patterns that were actually identified as being of 
that class. The overall set error as tested was also used, and 
was evaluated through Eq13.  
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Where m is the number of patterns in a data set, Xi is the 
expected result for an output neuron i, and Ti is the actual 
output from that output neuron. 
 
The specific error within incorrectly identified patterns 
was also used as a gauge for network performance, with 
the measure being the values generated from the networks 
output neurons during testing. These values were used as a 
point of comparison between networks.  
 
METHODOLOGY TOWARDS 
IDENTIFYING THE NETWORK 
ARCHITECTURE AND 
LEARNING PARAMETERS 
 
The three classes of Iris were allocated bit string 
representation as shown in table VI. 
 

Classifications Bit string 
Iris-setosa 1 0 0 
Iris-versicolor 0 1 0 
Iris-virginica 0 0 1 

Table VI. Classifications and their bit string 
representation 

 
The bit strings represent the expected activation of the 
output neurons in regards to a pattern, and are used in the 
training, and the testing of the networks. 
 
Stage 1 
The networks constructed during the first stage of the 
network architecture development where constructed using 
the four input, and three output neurons necessitated by the 
problem domain, and networks with hidden layer neurons 
numbering 3, 4, 5, 6, 7, 8, and 9. The initial value for the 
cycles was 100, with the other variables being left at the 
JavaNNS defaults. The column normalised values proved 
to be the fittest in the comparison of the normalisation 
techniques. The poor results from the analysis of these 
initial networks lead to the decision to increase the number 
of cycles. 
 
The value for the cycles was increased to 1000. The results 
showed improvement, with the plotting of the 
misidentified patterns, from both the testing and training 



sets against the number of hidden nodes demonstrating an 
improvement of the results with an increase in the number 
of hidden neurons, as shown in Figure 2.  
 

Misidentified Patterns vs Hidden Neurons
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Figure 2. Misidentified Patterns vs Hidden Neurons 

 
Plotting of the training and testing sets overall data set 
errors also demonstrated improvement of results with 
increases in the number of hidden layer neurons. Some 
informal networks generated for the purpose of identifying 
an appropriate number of cycles identified 70000 as a 
point of improvement under the constraints of nine hidden 
neurons, and column normalisation. 
 
Stage 2 
The second stage of the network architecture development 
consisted of the construction of networks for each of the 
normalisation techniques with 3, 6 and 9 hidden layer 
neurons, utilizing 10,000/ 20,000/ …/ 80,000 cycles. At 
this stage the networks continued to be developed with the 
default values from JavaNNS. The results derived from the 
fittest examples from each normalisation technique were 
plotted against each other so as to identify the 
normalisation technique with the best performance. The 
normalisation technique with the best results was 
demonstrated to be that of column normalisation as shown 
in Figure 3. 
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Figure 3. Misidentified Patterns vs Cycles 

A comparison of the best stage 2 results for the 
different normalisation techniques 

 
 
Stage 3 

The third and final stage towards the development of the 
network architecture involved the generation of networks 
with 8, 9, 10, 12, and 15 hidden neurons, and step widths 
of 0.1, 0.15, and 0.2. Each network was trained over 
40000, 80000, and 120000 cycles, with the maximum non-
propagated error set at 0.1, and the number of update steps 
to 1. The results from the analysis of the results, as shown 
in Table VII, were used towards the identification of the 
fittest network for the iris classification problem.  
 

Step Width 0.2 0.15 0.1 
Cycles 
(*10000) 4 8 12 4 8 12 4 8 12 
 
Misidentified 
patterns in:  
Train H8 2 2 1 2 1 1 1 1 1 
Test H8 1 1 1 1 1 1 1 1 1 
Train H9 2 1 1 1 1 1 1 1 1 
Test H9 1 1 1 1 1 1 1 1 1 
Train H10 2 1 1 1 1 1 1 1 1 
Test H10 1 1 1 1 1 1 1 1 1 
Train H12 2 1 1 1 1 1 1 1 1 
Test H12 1 1 1 1 1 1 1 1 1 
Train H15 1 1 1 1 1 1 1 1 1 
Test H15 1 1 1 1 1 1 1 1 1 
Table VII. A comparison between the misidentified 
patterns from networks with differing numbers of 

hidden layer (H), and step width. 
 
CONCLUSIONS 
 
The fittest network architecture used column 
normalisation, 40000 cycles, 1 hidden layer with 9 hidden 
neurons, a step width of 0.15, a maximum non-propagated 
error of 0.1, and a value of 1 for the number of update 
steps. 
 
The reasoning for the selection of the 9 hidden neurons 
was based in part on the following text from “Grouping 
parts with a neural network” by Chung, Y and Kusiak, A 
[2]: 
 

Hecht-Nielson (16) found that 2N+1 hidden neurons, 
where N is the number of inputs, are required for a 
one-hidden-layer back propagation network.  

 
As the number of inputs is four, the required number of 
hidden neurons was calculated to be nine. Other 
contributing factors towards the decision to restrict the 
hidden layer to 9 hidden neurons were identified. One of 
these factors related to the rate of change in the overall set 
errors. The overall set errors for the networks with 8, 9, 
and 10 hidden neurons, shown in table VIII, shows a 
marked deceleration in the depreciation of the error. This 
particular example is in the context of a step width of 0.15, 
a non-propagated error of 0.1, and a value of 1 for the 
number of update steps. 
 

Cycles 
Train 
 

Test 
 



 H8 
40000 45.8743 21.8767 
80000 45.2341 21.6376 
120000 44.9451 21.5327 
 H9 
40000 45.5431 21.7035 
80000 44.9928 21.504 
120000 44.6686 21.3828 
 H10 
40000 45.3209 21.588 
80000 44.8112 21.398 
120000 44.4725 21.2682 
Table VIII. A comparison between differing numbers 
of hidden neuron (H), and the associated overall set 

errors (in the context of the number of cycles). 
Note: Step width of 0.15, a non-propagated error of 0.1, 

and a number of update steps of 1 
 
Another reason for the decision to use nine hidden neurons 
is in reference to the specific error of the patterns 
incorrectly identified. Table IX shows the error for the 
incorrectly identified training pattern in the networks with 
9 and 10 hidden neurons. Due to the increase in all of the 
output neurons values, it was judged to be inefficient to 
increase the number of hidden neurons beyond nine. The 
network with 8 hidden neurons was discarded due to a 
poorer performance in the identification of the patterns 
under the constraints of a 40000 cycle training regime.  
 

Cycles of 40000, step width of 0.15, a non-
propagated error of 0.1, and a number of update 

steps of 1 
 

Hidden neurons: 9 
 Pattern: 57 is incorrect!!!!!!!!!!!! 
Expected 0 1 0    
Actual 0 0 1    
Results as 
generated 0.00212 0.41811 0.80217 

 
Hidden neurons: 10 

 Pattern: 57 is incorrect!!!!!!!!!!!! 
Expected 0 1 0    
Actual 0 0 1    
Results as 
generated 0.00213 0.41825 0.80385 
Table IX. The error within the incorrectly identified 

training pattern of the networks with 9 and 10 hidden 
neurons 

Note: Step width of 0.15, a non-propagated error of 0.1, 
and a number of update steps of 1 

 
The step width of 0.15 was decided upon as a result of the 
comparison between the results achieved under the 
conditions of a step width of 0.1, 0.15, and 0.2. The 
results, shown in Table X, demonstrate that the overall set 
error was least in the vicinity of the step width of 0.15. 
 

Step width H9 
0.1 45.8052 21.7768 

0.15 45.5431 21.7035 
0.2 45.7166 21.8375 

Table X. A comparison between step widths of 0.1, 
0.15, and 0.2 in the 9 neuron hidden layer neural 

network 
 
This network has been developed towards being able to 
identify Iris classifications on the basis of the attributes 
supplied. It is assumed that the data set is a fair reflection 
of the populations they represent, and that the efficiency of 
the network structure, as well as the efficiency of the 
training, are of importance. 
  
ACKNOWLEDGEMENTS: 
 

• Iris Plants Database 
Creator: R.A. Fisher 
Donor: Michael Marshall  

 
REFERENCES: 
 
[1]   Negnevitsky, M. Artificial Intelligence: A Guide 

to Intelligent Systems, First Edition, Harlow, 
Pearson Eduction, 2002, Page 175-178.  

 
[2]  Chung, E. Kusiak, A. Grouping parts with a 

neural network, “Journal of Manufacturing 
Systems[Full Text], volume 13, issue 4, Page 
262, Available ProQuest, 02786125 , 20-04-
2003”. 

 
 


